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Fracture energy maps for fibre composites 

J. K. WELLS, P.W.R. BEAUMONT 
Department of Engineering, University of Cambridge, Trumpington Street, 
Cambridge, UK 

Analytical expressions are presented which predict the debonding and pull-out lengths 
observed in brittle-fibre composites. The characteristic lengths are combined with 
models of four toughening mechanisms to calculate the work of fracture of a composite. 
The results are presented as maps showing not only contours of toughness but also the 
dominant toughening micromechanism. The toughness is largely determined by six 
material parameters, and each map demonstrates the combined effect of changing two 
of these simultaneously. Maps are presented for glass fibres in epoxy and carbon fibres 
in epoxy. Their use is demonstrated by showing the effects of hygrothermal aging on 
the toughness of the composites. 

Nomenclature Wpdf 
X 

Xc 

A value of P just less than one 
B value of P just greater than zero 
d fibre diameter 
Ef tensile modulus of fibre c~ 
g(1) general probability distribution o f /  
GII critical strain energy release rate per Mode 2 13 

fibre-matrix bond failure 3' 
G~ GII divided by geometry factor a %n 
Gm shear modulus of matrix e~ 
I a total debonded length of fibre em 
In. maximum pull-out length r/ 
[p mean pull-out length 
[ average value of a distributed length, l o1, 0 2 
rn Weibull modulus 
P cumulative probability of failure Od 
S cumulative probability of  survival o~ 
We elastic work (per fibre) oo 
Wi surface energy of fibre-matrix interface 7- 0 

(per fibre) 
Wp pull-out work (per fibre) rf 

post-debond friction work (per fibre) 
general distance from debond crack 
value o f x  which only a fraction B of pull- 
out lengths can exceed 
geometry factor from integration of stress 
field around fibre 
constant, but exact value depends on author 
surface energy of the composite 
surface energy of the matrix 
failure strain of fibre 
failure strain of matrix 
parameter dependent only on the Weibull 
modulus 
stresses at which fractions A, B of fibres 
have broken 
debond stress 
average fibre strength 
characteristic strength of fibre 
shear strength of fibre-matrix adhesive 
bond 
fiictional shear stress 

1. Introduction 
A number of theories have been proposed to 
account for the origins of toughness of fibrous 
composites. This paper describes four models 
based on the debonding, fracture and pulling-out 
of fibres. An equation is derived for each fracture 
process which includes terms for the properties of 
the fibre, matrix and interface, together with the 
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fibre debond length and fibre pull-out length. The 
fibre debond length and pull-out length are in turn 
predicted, allowing for the statistical distribution 
of fibre strength. The paper attempts to complete 
our understanding of the micromechanisms of 
fracture with the models for each fracture process, 
and thereby predict the range of dominance of 
each mode of fracture, and the corresponding 
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toughness. This is done by constructing toughness 
maps in which the axes are, for example, fibre 
strength and interfacial shear stress. By plotting 
contours of toughness predicted using the models 
for each micromechanism of fracture, the effect of 
changing the material parameters on composite 
toughness can be displayed using the diagrams. As 
an example, the effects of hostile environments on 
composite fracture behaviour are analysed using 
the maps. 

2. Theory of fibre debonding 
2.1. Prediction of fibre debonding stress 
A number of workers have considered the debond- 
ing of fibres in composite materials [1-5] .  One 
approach [1-4]  is to consider the stress carried by 
the fibre for which the corresponding interfacial 
shear stress exceeds the shear strength of the 
fibre-matrix interface, To. In this case the de- 
bonding stress, ad, is given by 

od = /3~o(/?dara) 1/2. (1) 

The value of the dimensionless constant /3 varies 
according to the details of the analysis, but in all 
cases it is only very slowly dependent on the fibre 
radius. Alternatively, the debonding stress may be 
determined by considering the energetics of the 
debonding process. When the interfacial shear 
crack propagates an increment fix, the energy 
balance demands that the surface energy of the 
new interface equals the strain energy released 
from the relaxed matrix (Fig. 1): 

27rrGiifx = l ( o ~ / E m ) 6 V m .  

The term fV m is the effective incremental volume 
of matrix which is relaxed. Whilst fVra must be 
proportional to the fibre area and the increment 
fix, its exact value can only be calculated from 
a full stress analysis around the fibre. For the 
purposes of this work, a dimensionless parameter cz 
is introduced, such that: 

f Vra = ctffr 2 ~x. 

The value of a will be a slow function of fibre 
radius and matrix shear modulus. The debonding 
stress is therefore given by 

o d = (4EmGII/Oa') v2. (2) 

For convenience, let Gi i /a  = G2, where G2 may 
be determined experimentally. 

Equation2 may be Compared with the 
expression derived by Outwater and Murphy [5]: 
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T A B L E I The dependence of debonding stress on wire 
diameter 

Diameter of Debonding 
wire (mm) stress (GPa) 

0.79 0.68 -+ 0.06 
0.23 1.66 -+ 0.3 

o d = (4EfGiI /r)  vz .  

The dependence on Ef arises because Outwater 
and Murphy considered the released strain energy 
to come from the fibre. 

Note that the energy-based calculations predict 
a debond stress which is a function of fibre radius, 
while Equation 1 suggests that r and o a are essen- 
tially independent. 

Several workers [1,3, 6] have conducted model 
experiments to study the debonding of wires or 
fibres but have not studied the effect of fibre size. 
In order to investigate the validity of Equations 1 
and 2, cold-drawn steel wires of two different 
diameters were embedded in a Ciba-Geigy epoxy 
system (LY567/HY567) and the load to debond 
the wire measured. Preliminary results show the 
debond stress is dependent on fibre diameter, 
which Equation 1 fails to predict (Table I). 
Equation2 predicts a debond stress ratio for 
small:large wires of about 1.9, whereas a ratio of 
2.4 was observed in the experiments. The differ- 
ence in the two values lies within the limits of 
experimental error for the small number of speci- 
mens tested. The energy-based calculation of 
debonding stress therefore appears the more 
accurate. 

In similar experiments, using bundles of 1600 
glass fibres of 14/2m diameter, the debonding 
stress was estimated to be 0.6 (+ 0.1)GPa. If the 
modulus of the matrix, Era, is 3 GPa, then G2 has 
a value of about 210 J m -2. 

i 

i 

I 
I ~x 

Figure 1 The debonded fibre. The linear build-up in stress 
with increasing x is given by Equation 3. 



2.2. Prediction of the fibre debond length 
When the fibre stress exceeds the debonding stress 
an interfacial shear, or debond, crack propagates 
along the fibre. After debonding, the stress transfer 
between fibre and matrix is no longer by the shear 
deformation of the matrix, but is due to frictional 
shear stresses between matrix and fibre. This stress 
is assumed to have a constant value, rf; in reality 
it will vary due to the Poisson contraction of the 
fibre within the matrix. The stress build-up is 
therefore assumed to be linear with increasing 
distance away from the debond crack, with co- 
ordinates as defined in Fig. 1. 

The stress in the fibre is 

o = o d + 4r fx /d .  (3) 

Debonding will proceed until g reaches the tensile 
strength of the fibre at, and the total debonded 
length is then given by 

d 
la = 2r--f- (of -- go)- (4) 

3. Theory of fibre pull-out 
In the above discussion, no allowance was made 
for the distribution of flaws in the fibre, and the 
corresponding variation in strength. The fibre 
would therefore be expected to break in the 
region of maximum stress; that is, the small region 
between the two faces of the cracked matrix. 

3.1. Existing calculation of fibre 
pull-out length 

Some workers [5, 7, 8] consider the maximum 
pull-out length to be equal to half the critical fibre 
length. Whilst this forms an approximate upper 
bound on lm, it is not able to predict the pull-out 
length from material properties. 

3.2. New calculation of fibre 
pull-out length 

The variation of fibre strength is known to be well 
described by the Weibull distribution [9]. The 
cumulative probability of a fibre surviving a stress 
o is given by 

S = exp [-- (O/ao) m] (5) 

and the cumulative probability of failure by 

P =  1 - -S .  

A more refined calculation of the pull-out length 
is made as follows. Since the variation of the fibre 

axial stress, given by Equation 3, is a linear func- 
tion of x, the pull-out length must also be of a 
Weibull distribution. Long pull-out lengths occur 
because there is a small probability of finding a 
severe flaw away from, in preference to a minor 
flaw near, the region of maximum stress. 

Fig. 2 shows how the variability in fibre strength 
leads directly to the possibility of fibre pull-out. 
A fibre of strength ol is unusually strong, and 
can only break in the region of maximum stress; 
i.e. in the region between the matrix crack faces. 
Fibre B, however, is weak and can break at any 
point between the matrix crack and the maximum 
pull-out length. 

Fig. 2 shows schematically how the pull-out 
length may be estimated by considering these two 
extreme cases. The cumulative probability of 
failure of the fibre is related to the distribution 
of pull-out lengths using the stress-distance 
relationship for the fibre. A good estimate of the 
m~c~imum pull-out length possible, lm, is given by 

l m = l l  d - - X  e- 

T h e  fractions A and B may be regarded as a 
measure of the shortest and longest lengths of 
fibre which can be resolved in experiments. This 
treatment assumes that the whole spectrum of 
flaws are repeated in a length of fibre which is 
small by comparison with the pull-out length. 

The difference in the stresses gl and 02 may 
be calculated from Equation 3, giving: 

(go -- a2) = 4 f~ lm/d .  (6) 

The difference ( 0 1 -  02) is a function of the 
variability in the strength of fibres. For a fibre of 
uniform strength, (el -- 02) would reduce to zero; 
for a fibre of variable strength, it may be calculated 
from Equation 5, since: 

1 
- - - - l n S  = a/go; 

m 

hence: 

The stress go is the characteristic strength of the 
fibres, and is related to the mean strength, or, by 

Of 
go = (In 2) urn" (8) 

Equating Equations 6 and 7 and substituting for 
ao from Equation 8: 
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Figure 2 The relationship between the cumulative probability of failure of a fibre, P(o), and the cumulative probability 
of fibre pull-out lengths. 

of ( A )  4"rf Irn (9) 
m (In 2) 1/m In - d 

Rearranging Equation 9 to find the average pull- 
out length [o, which is one half of  the maximum 
pull-out length, lm, we find: 

old (10) 
[P = 8rf r/ 

where 
In (A/8) 

7 / -  
m (ln 2) l/m ' 

~7 may be found from experiment; although A 
and B might be estimated from the shortest and 
longest experimentally resolved pull-out lengths. 
The Weibull modulus, m, may be found from 
experiment. Fig. 3 shows pull-out and debond 
length data collected from 90 experiments on the 
fracture of  glass fibres in epoxy, similar to those 
described by Kirk etal. [10]. These experiments 
were initially conducted for other purposes, but 
the results may be used to give an estimate of r/. 
From Equations 4 and 10, the slope of  the graph 
is given by 

If  of and oa are assumed constant, having values 

o f  1.65 and 0.6GPa respectively, then r/ has a 
value of  about 0.13. The data points lying above 
the line are generally from low-temperature exper- 
iments where debonding was encouraged; those 
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Figure 3 Debond lengths versus average pull-out lengths, 
for glass fibres in epoxy. The material was exposed to 
extremes of temperature and humidity, which is the cause 
of the scatter. 
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below are from specimens which had been exposed 
to moisture. The value of ~ is dependent only on 
the reciprocal of the Weibull modulus of  the fibre. 

4. Work of fracture 
The work of fracture of glass fibres in epoxy is 
thought to originate from four micromechanisms 
of fracture [10, 11]. 

4.1.  Pos t -debond  f r ic t ion  ene rgy  
The post-debond friction work [12] is due to the 
relative slip of  the broken matrix over the debonded 
length of fibre, prior to the failure of the fibre. 
The work done per fibre is given by 

Wpd f = ~drf l~(e ,  -- em). (11) 

The difference in fibre and matrix failure strains, 
( e f -  em), may be estimated as the ratio of fibre 
strength to fibre modulus for a brittle matrix 
composite. 

4.2. Elastic energy in the fibre 
The fibre stress within the debonded region is 
reduced after fibre failure. There is a correspond- 
ing release of elastic strain energy from the fibre, 
which cannot assist in crack propagation. The 
strain energy per fibre, sometimes called elastic or 
debond energy, was first considered by Outwater 
and Murphy [5], and is given by 

We = Z af - dx 

= Trr---~21a~ld + r~l~ 6r 2 2r (12) 

In order to simplify the above expression, it is 
often assumed that the debond length is equal to 
the critical length. Equation 12 then reduces to 

rrr 2 a~ l d 
We -- ( 1 3 )  

6E~ 

Since the debond stress has been shown to be a 
significant proportion of the fibre strength, the 
simplification is invalid. The full version of 
Equation 12 should therefore be used. 

4.3. I nterfacial surface energy 
The newly created interface between fibre and 
resin has an associated surface energy, W i. This 
may be estimated by the product of the area of 
interface and the surface energy of the matrix, 3% : 

~[]i = 2ndld')'rn (14) 

per fibre. Wagner etaL [13] report a value of 
7m = 100 J m-2 for epoxy. 

4.4. The work of fibre pull-out 
The work to pull a broken fibre a distance l out 
of its matrix socket is given by 

Wp(t) = ~Trdrfl 2. 

Kelly [12] considered the average work of pull- 
out for fibres of length between zero and l m to be 

tm 
1 fo Wp(l) dl. 

This assumes a uniform probability of observing 
pull-out lengths between the two limits. Work by 
Beaumont and Anstice [141 has shown that both 
pull-out and debond lengths are well described by 
a Weibull probability function. 

The calculation of the average work o f  pull- 
out requires the calculation of the average value of 
the square of the pull-out length. Similarly, the 
average elastic energy is a function of la, l,~, and 
l~ (Equation 12). If the cumulative probability 
distribution o f  lengths is of the form : 

S = exp [--(O/ao) m] 

then the probability of observing a length between 
I and (l + dl) is: 

g(1) dl = dl lg exp -- d/. 

The averages of the pull-out and debond lengths 
are given by the general relations: 

fo f = lg(O dl l ~ = .  t~g(l)  at 

I-Y= f:13g(l)  dl. 

The required integrals have been evaluated 
numerically, and, for convenience, are expressed 
as a power relationship of the Weibull mjodulus. 
The expressions shown in Table II approximate to 
the behaviour of the average over the stated range 
of Weibull moduli. 

The correction factor for the pull-out term is 
particularly important. From Equation 10, the 
average length of pull-out is proportional to 
the reciprocal of m; the work of pull-out is 
proportional to the square of the pull-out length. 
The resulting dependence of W v on m is therefore 
given by the approximation: 
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T A B L E I I Approximate expressions for the dependence of the average values of length distributions on the Weibull 
parameter, m 

Approximate expression Range of valid, 'm' Typical 'm' value [ 14] 

Pull-out i T = 1.6m(-0.3~) ~[2 1.5 < m < 2 1.9 

l-i- = 1.2m (-~ [i 2 
Debonding l- 3- = 1.4m(_O.lS ) il 3 2 < m < 5.5 4.3 

1 
Wp ~ m(2.64 ) . 

In the case of  the debond length, the distinction 
between l -T and (7) 2 is small, and probably 
negligible when considering post-debond friction. 
However, it may be important in the calculation 
of  the elastic work where the difference of  two 
variables is involved. 

4 .5 .  O t h e r  t o u g h e n i n g  m e c h a n i s m s  
There are other mechanisms of  toughening which 
may also operate in glass-fibre-reinforced plastics 
(GFRP), including the creation of fibre and matrix 
fracture surfaces and their associated surface 
energies. These are small by comparison with the 
major toughening mechanisms. 

5. The construction and implications 
of toughness mapping 

The complex interactions of  material parameters 
cannot easily be seen from a set of  equations; a 

mapping technique is therefore used to present 
the results. A map shows the effect of  changing 
two material parameters simultane0usly, such as 
fibre strength and interfacial shear stress. In 
addition, the largest component of  toughness is 
found at all points. The areas in which the various 
mechanisms are dominant are shown on the map. 

The maps are constructed by calculating pull- 
out and debond lengths, from Equations 4 and 10, 
for particular combinations of material properties. 
These results may then be used to calculate the 
expected toughness of  the chosen composite, 
using Equations 11-14,  together with the results 
in Table II. 

By dividing the total work of  fracture per fibre 
by twice the cross-sectional area of  the fibre and 
multiplying by the fibre volume fraction, the energy 
per unit area of  crack extension, 7, is found. 

5.1. Exposure of glass-fibre reinforced 
epoxy to moisture 

Contours of  3' are plotted for variation of  fibre 
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Figure 4 Contours of  predicted toughness (KJ m -2) for glass fibres in epoxy, as a function of fibre strength and fric- 
tional shear stress. The broken line indicates a change in dominant toughening mechanism from post-debond friction 
(P) to interfacial energy (I). The changes of  of and r f  for samples exposed to moisture are also shown. 
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T A B L E I I I The default values of material constants 

Glass fibre Carbon fibre 

Diameter, d (urn) 14 8 
Strength, of (GPa) 1.65 3.12 
Modulus, Ef (GPa) 70 230 
Interface parameter, G 2 (J m -2) 210 1950 
Shear stress, rf  (MPa) 4 4 
Volume fraction, Vf 0.5 0.5 

strength and interfacial shear stress (Fig. 4), all 
other material parameters are held at the values 
listed in Table III. In addition, to facilitate com- 
parison with experimental data, contours of 
predicted debond lengths are plotted for the 
same variables (Fig. 5). 

These maps apply to unidirectional glass-fibre- 
reinforced epoxy such as has been tested by 
Anstice and Beaumont [15]. As an example, they 
are used in this work to account for the fracture 
behaviour of the specimens when exposed to a 
100 ~ C/95% r.h. environment. 

Let us assume that the initial changes in debond 
length are caused by resin volume changes due to 
moisture uptake, and further, that the fibre strength 
is unaffected until cessation of resin swelling 
occurs after three days exposure. The trajectory 
of the sample on the of, ~-f plane is shown in Figs 
4 and 5. Fig. 6 shows the predicted and observed 
changes in 7. The prediction follows the trend 
well, despite the crude assumptions made. The 

absolute value of 7 is lower than the experimental 
value because a small error in of causes a large 
error in 7, since 3' is very sensitive to changes in of. 
The interfacial properties may also be affected, 
but there is ambiguity in the interpretation of 
changing debond lengths; these may be caused by 
changes in both debonding stress (hence G2) and 
rf. All reasonable combinations of G2 and rf give 
approximately equal predicted toughness. 

Fig. 7 shows four toughness maps for glass 
fibre in epoxy. They show, quantitatively, how 
all the complex interdependencies of material 
parameters combine to affect toughness. They 
may be summarized as follows: 

(a) toughness increases rapidly with increasing 
fibre strength; 

(b) toughness decreases rapidly with increasing 
frictional shear stress; 

(c) toughness decreases slowly with increasing 
fibre modulus and G n.  

In addition, the toughness is approximately 

5/ r 4 / 
/ 

,r / 

1 i 3 4 5 

F R I C T I O N A L  SHEAR STRESS ( M P a )  

Figure 5 Contours of predicted fibre debond length (millJmetres) for glass fibres in epoxy as ~ function of fibre strength 
and frictional shear stress, The variation of of and ~-f for samples exposed to moisture is also shown. 
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Figure 6 The experimental (full symbol) and theoretical 
(open symbol) toughness of glass fibres (circles) and 
carbon fibres (triangles) in epoxy. 

proportional to the square of  the fibre diameter, 
assuming that fibre strength is independent of  
diameter. 

5.2. Exposure of carbon-f ibre reinforced 
epoxy to moisture 

Similar maps have been produced for carbon-fibre 
composites, Figs 8 and 9. These contour maps are 
again compared with results from [14]. In the 
absence of data on the debonding stress of  carbon 

fibres, a value of  G z was chosen which gave good 
agreement with the observed toughness and pull- 
out length for the first datum point. A value of  
1950 J m -2 was used for G2. This corresponds to a 
debond stress of  2.4GPa, and a typical debond 
length of  less than one millimetre. Debonding is 
not as easily observed in carbon-fibre composites 
as in glass-fibre composites. This is partly due 
to the short debond lengths involved, and the 
different optical properties of  the fibre. 

The changes in pull-out length and toughness 
which were observed by Anstice and Beaumont 
cannot be due to the same mechanism as pro- 
posed for the case of  glass fibre. The increasing 
pull-out length observed for CFRP exposed to 
100 ~ C/95 ~ r.h. is due to an increase in rf. This 
combined with a fall in G2 from 1950 to ~ 1250 
Jm -2 during the 28 days of  the experiment, 
accounts for the observed change in toughness 
(Figs 6 and 8). 

6 .  C o n c l u s i o n s  
(a) The energy debonding stress of  a fibre appears 

2, 
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1 . . . . .  
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0 _ 450 40 100 
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Figure 7 Contours of toughness (KJ m -=) for glass fibres in epoxy as a function of fibre strength, fibre modulus, fric- 
tional shear stress and interface parameter. The broken line indicates a change in the dominant toughening mechanism 
from post-debond friction (P) to interfacial energy (I). 
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Figure 8 Contours of predicted toughness (KJ m -2) for 
carbon fibres in epoxy. The variation of G 2 and rf for 
samples exposed to moisture is also shown. Interfacial 
energy is the dominant toughening mechanism. 

to be more accurately described by an energy- 

based calculation. 

(b) The pull-out lengths of  a brittle-fibre com- 

posite are directly related to the flaw distribution 

in the material. 
(c) The toughness of  GFRP and CFRP is due to 

four major sources which depend on six material 

constants (af, El ,  d, G2, Vf, rf). The debond stress 

is also a slow function of  matrix modulus. 

(d) The changes in the toughness.of composites 

exposed to humid environments have been 

accounted for using plausible changes irt the 

material parameters of, r~, E m and G~.  

These preliminary maps are currently being 

refined to take account of  a number of  small 

~ 3 . 5  / / / 
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Figure 9 Contours of predicted fibre pull-out length 
(millimetres) for carbon fibres in epoxy. The variation 
of G 2 and rf for samples exposed to moisture is also 
shown. 

effects, such as Poisson contraction of  the fibres 

under stress. 
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